DESIGN COST CUTTING & FAILURES IN BOILER

Boiler is given guarantee of engineering/design for life span of around 25 years but trouble starts within a short time period due to engineering issues comes on surface.

In my professional career, I understand that, few changes are made purposefully against essential requirement in the engineering norms for cost cutting in boilers, auxiliaries to re-sell products against failures and get after sales services / spares business from customer.

Then they suggest few changes in engineering / design to re-sell product. Later, they implement the Improved Design to get business, while it should have come in the first stage of execution.

If Not Specified in Contract & ignored by Consultant, SELLER will try to reduce cost and quality by below mentioned points:-

- 1. Reduce List of mandatory spare items
- 2. Reduce furnace height upto maximum extent limit,
- 3. Change in type of boiler support like Top support, Bottom Support, Centre support
- 4. Reduce Staircase width 1000 mm upto operating platform & above 750 mm only
- 5. Supports Cantilever for soot blower / other platform upto 3 meters
- 6. Coal spreading by Pneumatic Spreader in Grate Boiler to avoid Mechanical spreader
- 7. Reduce Header length by placing valves in offset position at header
- 8. Water wall panel / Economiser tube thickness reduction to 3.66 mm from 4.0 mm. Initially, in old supplied boilers, water wall tube thickness was 4.5 mm.
- 9. Increment in Water wall panel tube pitch for 63.5 mm O.D tubes from 88 mm to 100 mm
- 10. Pipe / Header / Down comer / Riser size reduction by increasing velocity & avoiding unbalance factor in calculation. Change in Material grade by avoiding unbalance factor.
- 11. Avoid Rifle tube selection for bed coil in AFBC Boiler.
- 12. Change in Air nozzle design of furnace bed, Refractory material & it's application, Cyclone separator design, Ash cooler design, Pollution control equipment sizing, Changes in number of Essential Instruments, Height of canopy above steam drum, Secondary Air distribution-Over Fire Air. etc
- 13. Changes in Circulation Ratio of boiler, Furnace Bed height, Flue gas residence time in furnace, High Water Flow in Spray system for Steam Temperature control

BASIC ENGINEERING / DESIGN FAILURES in BOILER:-

- 1. Pressure parts failure in CFBC boilers, AFBC boilers & Other Boilers
- 2. High Furnace bed temperature (>900 degC) in Fluidized Bed Boilers. It will increase Fouling and NOx emission.
- 3. Furnace Bed shifting & Bed material shifting in Wind box
- 4. Furnace, Economiser, APH casing vibration (Trying to arrest by jack bolt/guide lock OR by restricting expansion movement)

- 5. Bed Coil & Bed Superheater tubes failures (AFBC Boiler), even half sleeve full sleeve / refractory installation.
- 6. Failure of Riser going to steam drum due to FAC (Flow Accelerated Corrosion)
- 7. High temperatures in Ash hopper, Frequent Chocking of flue gas path due to fuel carryover and secondary burning in Biomass and Slop fired Boiler
- 8. High back end-APH outlet-gas temperature (>200 degC) & heavy furnace pressure fluctuation with back firing in Biomass and Slop fired Boiler
- 9. APH tube thickness change (S.S. tube of 1.0 mm not effective)
- 10. ID fan impeller water cleaning (Due to ash carry over & non performing ESP / Bag filter / Wet Scrubber / Cyclones
- 11. Low Pressure Drop across Superheater coils lead to flow unbalance & tube failure.

Example on Boiler Feed Pump (BFP) Selection @Cost Cutting BOILER FEED PUMP & DEAERATOR SIZE SELECTION

BASIC CONSIDERATION in BFP DESIGN SELCETION	UNIT	Boiler running @100% MCR	Boiler running @110% Peak Load
Boiler Peak Load %	% MCR	100	110
Blowdown loss % in boiler	% MCR	3	4
Number of Boiler feed pump	Nos.	1	1
Boiler MCR capacity	kg/hr	100,000	100,000
Total Feed Water Flow @ Boiler Peak Load	kg/hr	100,000	110,000
Flow handled by each Boielr feed pump	%	100	100
Additional water requirement	kg/hr	0	0
Feed water flow at MCR considering Blowdown loss	kg/hr	103000	104000
Feed water flow at Boiler Peak Load including Blowdown loss	kg/hr	103000	114000
Feed water temperature	deg.C	125	125
Feed water density	kg/M3	938	938
Design flow margin	%	10	10
Design pressure margin	%	5	5

BOILER FEED PUMP DISCHARGE PRESSURE SELECTION

Steam pressure at battery limit	kg/cm ² g	20.00	20.00
Super heater header pressure	kg/cm ² g	20.00	20.00
Super heater Safety Valve set pressure Margin %	kg/cm ² g	0.00	5.00
Super heater Safety Valve set pressure with/without Margin	kg/cm ² g	20.00	21.05
Super heater pressure drop	kg/cm ² g	0.5	0.5
Max. Steam drum operating pressure	kg/cm ² g	20.50	21.55
LHS Steam drum Safety Valve set pressure	kg/cm ² g	22.00	23.05
RHS Steam drum Safety Valve set pressure - BOILER DESIGN PRESSURE	kg/cm ² g	22.50	23.55
Static head	kg/cm ² g	1.8	1.8
Pressure drop across Economiser	kg/cm ² g	1.5	1.5
Pressure drop across HP heater	kg/cm ² g	0.5	0.5
Pressure drop across control valve & piping	kg/cm ² g	4.5	4.5

BFP discharge pressure at 100% MCR with design pressure margin @5%	kg/cm ² g	32.34	33.44
BFP discharge Head at 100% MCR with design pressure margin @5%	MWC	345	357
Boiler feed pump capacity at MCR	M3 / hr	109.81	110.87
Boiler feed pump capacity with design flow margin @10%	M3 / hr	120.79	133.69
Boiler feed pump capacity with design flow margin @10%	TPH	113.30	125.40

		Boiler @	Boiler @ 110%
DEAERATOR SIZE SELECTION		100% MCR	Peak Load
Deaerator size @ MCR Boiler Loading with Margin	% MCR	120	130
Water Storage time for deaerator Tank	Minutes	8	8
Deaerator capacity	M3/hr	127.9	138.6
Water Storage Tank volume	M3	14.2	15.6

BASIC ENGINEERING / DESIGN RULES for BOILER:-

- 1. Excess Air: 20 to 25% max. in AFBC Boiler. Excess Air is directly proportional to increment in Fluidization Velocity
- 2. Fluidization Velocity: 2.5 m/s max. in worst case in AFBC Boiler. Erosion rate is directly proportional to increment in Fluidization velocity.
- 3. Furnace Bed Temperature is directly proportional to increment in Fluidization Velocity and reduction in Residence time in Furnace.
- 4. Furnace Bed Temperature: 900 degC max. Depend on Ash fusion Initial deformation Temperature (IDT) on oxidizing and reducing medium.
- 5. Un-burnt Carbon Loss: Directly proportional to Fixed Carbon, Fluidization Velocity and inversely proportional to Furnace Height, Furnace Bed Temperature and Excess Air.
- 6. Attemperator / Spray water: 50 degC min. above Saturation temperature of steam at downstream (outlet)
- 7. Soot Blowers installation for over-bed firing including Over-fire air system installation @400 mmwc min. at all desired elevation
- 8. All essential major measurement points are provided with adjacent temperature test pocket for local measurement & calibrating.

M/s Unite Energy Corporation LLP is keen to provide the Spares, Sales & Services, Retrofit & Site Repairs of Boiler & Auxiliaries, Performance Evaluation, Shop & Site Fabrication, Erection & Commissioning, Design Modification & Feasibility Study, Consultancy & troubleshooting support to mitigate the irregularities in the plant, minimize breakdown & downtime and improvise design & system performance to improve the overall plant's health and performance.

Regards

Pramesh Kumar Jain

Chief Executive- Technical

Mobile: +91 9868499319

Email: pramesh.uniteenergy@gmail.com

Unite Energy Corporation LLP, Ghaziabad, U.P., INDIA

WE WISH A "HAPPY NEW YEAR 2023"

WELCOME TO A NEW JOURNEY WITH NEW GOAL